WORKSHOP : INNOVATING TOGETHER Data collection and progress monitoring using autonomous rover and IoT Presenters Sina KARIMI Léo MARCY Supervisors Ivanka IORDANOVA - Construction dept David ST-ONGE – Mechanical dept Contributors Sina KARIMI Rafael GOMES Léo MARCY ÉCOLE DE TECHNOLOGIE SUPÉRIEURE GROUPE DE RECHERCHE POMERLEAU GR EN INTÉGRATION ET DÉVELOPPEMENT DURABLE BRAGA EN ENVIRONNEMENT BÂTI

Problem statement

- Progress Monitoring is a manual and time-consuming task
 - Not very accurate
 - Needs to be automated

Research objectives

- Automized progress monitoring on construction site
 - Automated data collection
 - Autonomous robot navigation
 - Autonomous data merging
 - Comparison between as-built and as-planned model
 - 3D reconstruction
 - Automated generation of dashboards

EN INTÉGRATION ET DÉVELOPPEMENT DURABLE

11

Project Workflow

BLE Beacons Location

Used to collect the position of small elements of the as-built model.

Dashboards of progress monitoring

The final goal is to generate dashboards to help the construction workers on site

Data Collection by the Rover

Used to collect video, pictures and point cloud

Comparison between as-built model And as-planned 4D model

Compare the two models to see the differences

The Rover

Velodyne Puck

- 32 laser lines
- Field of View: 360° • horizontal and 40° vertical
- Range: 120 m

Clearpath JACKAL

- All-terrain vehicle
- Size: 508 x 430 x 250 mm
- Weight: 17 kg
- Max payload: 20 kg
- Max speed: 2.0 m/s
- Run time: 4 hours
- IMU and Wheel Encoders: can help with SLAM

Realsense T265

- of view
- accurate measurement of rotation and acceleration
- Inertial Measurement Unit: • V-SLAM algorithm: tracks camera position and orientation

13

GROUPE DE RECHERCHE EN INTÉGRATION ET DÉVELOPPEMENT DURABLE EN ENVIRONNEMENT BÂTI

Ouster OS1 - 32

- 32 laser lines
- Field of View: 360° horizontal and 45° vertical
- Range: 120 m

• Two Fisheye lenses: large field

Realsense D435i

- RGB camera: 1920 × 1080 pixels / 30 frames per second
- Depth: Measures distance to objects in the environment

Goals and challenges

- Modification of A* algorithm
- Path planning based on BIM/IFC semantics

14

WORKSHOP : INNOVATING TOGETHER

Overall dataflow

Data Point Cloud

This data point Cloud was collected by the Rover on the CHUM construction Site

Data Point Cloud 17

The goal of the data point cloud is to compare the as-built with 4D as-planned model, to see what are the differences

We will use data point cloud to compare LOD200 elements: Walls, Floors, Ceilings

UPE DE RECHERCHI EN INTÉGRATION ET DÉVELOPPEMENT DURABLE

<u>Treatment of the Point Cloud</u>

BLE Beacons

The goal of the BLE beacons is to localize small elements of the construction to see if they are well positioning.

We will use BLE Beacons to compare small elements: Fire System, Sprinklers...

- Place the beacons on an element 1
- 2. Localize the element on construction site with Smartphone
- 3. Process the information to see if the element is well positioned

OUPE DE RECHERCHE EN INTÉGRATION ET DÉVELOPPEMENT DURABLE

BLE^{*} Beacons Confidex Viking

An example of Beacons used in the project

* : Bluetooth Low Energy

Conclusion

- Project progress
 - Sensor integration
 - Robot Navigation with BIM and without BIM
 - Autonomous navigation on construction site
 - Point Cloud extraction
- Future steps
 - BIM / IFC path planning
 - 3D reconstruction
 - Comparison between the models
 - Semi-automated progress monitoring

GROUPE DE RECHERCHE EN INTÉGRATION ET DÉVELOPPEMENT DURABLE EN ENVIRONNEMENT BÂTI

19

Thank you for your attention!

We thank our partners:

GROUPE DE RECHERCHE EN INTÉGRATION ET DÉVELOPPEMENT DURABLE

WORKSHOP : INNOVATING TOGETHER